1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
/*
Implementation of the Lilliput-AE tweakable block cipher.
Authors, hereby denoted as "the implementer":
Kévin Le Gouguec,
2019.
For more information, feedback or questions, refer to our website:
https://paclido.fr/lilliput-ae
To the extent possible under law, the implementer has waived all copyright
and related or neighboring rights to the source code in this file.
http://creativecommons.org/publicdomain/zero/1.0/
---
This file implements Lilliput-AE's nonce-respecting mode based on ΘCB3.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "cipher.h"
#include "lilliput-ae.h"
#include "lilliput-ae-utils.h"
static const uint8_t _0n[BLOCK_BYTES] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static void _fill_msg_tweak(
uint8_t prefix,
const uint8_t N[NONCE_BYTES],
size_t block_index,
uint8_t tweak[TWEAK_BYTES]
)
{
/* With an s-bit block index, the t-bit tweak is filled as follows:
*
* - bits [ 1, t-|N|-4]: block index
* [ 1, s]: actual block index
* [ s+1, t-|N|-4]: 0-padding
* - bits [t-|N|-3, t-4]: nonce
* - bits [ t-3, t]: 4-bit prefix
*/
copy_block_index(block_index, tweak);
size_t N_start = TWEAK_BYTES - NONCE_BYTES - 1;
tweak[N_start] = lower_nibble(N[0]) << 4;
for (size_t i=1; i<NONCE_BYTES; i++)
{
tweak[N_start+i] = lower_nibble(N[i]) << 4 ^ upper_nibble(N[i-1]);
}
tweak[TWEAK_BYTES-1] = prefix << 4 ^ upper_nibble(N[NONCE_BYTES-1]);
}
static void _encrypt_message(
const uint8_t key[KEY_BYTES],
size_t M_len,
const uint8_t M[M_len],
const uint8_t N[NONCE_BYTES],
uint8_t C[M_len+BLOCK_BYTES],
uint8_t Final[BLOCK_BYTES]
)
{
size_t l = M_len / BLOCK_BYTES;
size_t rest = M_len % BLOCK_BYTES;
uint8_t tweak[TWEAK_BYTES];
uint8_t checksum[BLOCK_BYTES];
memset(tweak, 0, TWEAK_BYTES);
memset(checksum, 0, BLOCK_BYTES);
for (size_t j=0; j<l; j++)
{
xor_into(checksum, &M[j*BLOCK_BYTES]);
_fill_msg_tweak(0x0, N, j, tweak);
encrypt(key, tweak, &M[j*BLOCK_BYTES], &C[j*BLOCK_BYTES]);
}
if (rest == 0)
{
_fill_msg_tweak(0x1, N, l, tweak);
encrypt(key, tweak, checksum, Final);
}
else
{
uint8_t M_rest[BLOCK_BYTES];
uint8_t Pad[BLOCK_BYTES];
pad10(rest, &M[l*BLOCK_BYTES], M_rest);
xor_into(checksum, M_rest);
_fill_msg_tweak(0x4, N, l, tweak);
encrypt(key, tweak, _0n, Pad);
xor_arrays(rest, &C[l*BLOCK_BYTES], &M[l*BLOCK_BYTES], Pad);
_fill_msg_tweak(0x5, N, l+1, tweak);
encrypt(key, tweak, checksum, Final);
}
}
static void _decrypt_message(
const uint8_t key[KEY_BYTES],
size_t C_len,
const uint8_t C[C_len],
const uint8_t N[NONCE_BYTES],
uint8_t M[C_len],
uint8_t Final[BLOCK_BYTES]
)
{
size_t l = C_len / BLOCK_BYTES;
size_t rest = C_len % BLOCK_BYTES;
uint8_t tweak[TWEAK_BYTES];
uint8_t checksum[BLOCK_BYTES];
memset(tweak, 0, TWEAK_BYTES);
memset(checksum, 0, BLOCK_BYTES);
for (size_t j=0; j<l; j++)
{
_fill_msg_tweak(0x0, N, j, tweak);
decrypt(key, tweak, &C[j*BLOCK_BYTES], &M[j*BLOCK_BYTES]);
xor_into(checksum, &M[j*BLOCK_BYTES]);
}
if (rest == 0)
{
_fill_msg_tweak(0x1, N, l, tweak);
encrypt(key, tweak, checksum, Final);
}
else
{
uint8_t M_rest[BLOCK_BYTES];
uint8_t Pad[BLOCK_BYTES];
_fill_msg_tweak(0x4, N, l, tweak);
encrypt(key, tweak, _0n, Pad);
xor_arrays(rest, &M[l*BLOCK_BYTES], &C[l*BLOCK_BYTES], Pad);
pad10(rest, &M[l*BLOCK_BYTES], M_rest);
xor_into(checksum, M_rest);
_fill_msg_tweak(0x5, N, l+1, tweak);
encrypt(key, tweak, checksum, Final);
}
}
static void _generate_tag(
const uint8_t Final[BLOCK_BYTES],
const uint8_t Auth[BLOCK_BYTES],
uint8_t tag[TAG_BYTES]
)
{
xor_arrays(TAG_BYTES, tag, Final, Auth);
}
void lilliput_ae_encrypt(
size_t message_len,
const uint8_t message[message_len],
size_t auth_data_len,
const uint8_t auth_data[auth_data_len],
const uint8_t key[KEY_BYTES],
const uint8_t nonce[NONCE_BYTES],
uint8_t ciphertext[message_len],
uint8_t tag[TAG_BYTES]
)
{
uint8_t auth[BLOCK_BYTES];
process_associated_data(key, auth_data_len, auth_data, auth);
uint8_t final[BLOCK_BYTES];
_encrypt_message(key, message_len, message, nonce, ciphertext, final);
_generate_tag(final, auth, tag);
}
bool lilliput_ae_decrypt(
size_t ciphertext_len,
const uint8_t ciphertext[ciphertext_len],
size_t auth_data_len,
const uint8_t auth_data[auth_data_len],
const uint8_t key[KEY_BYTES],
const uint8_t nonce[NONCE_BYTES],
const uint8_t tag[TAG_BYTES],
uint8_t message[ciphertext_len]
)
{
uint8_t auth[BLOCK_BYTES];
process_associated_data(key, auth_data_len, auth_data, auth);
uint8_t final[BLOCK_BYTES];
_decrypt_message(key, ciphertext_len, ciphertext, nonce, message, final);
uint8_t effective_tag[TAG_BYTES];
_generate_tag(final, auth, effective_tag);
return memcmp(tag, effective_tag, TAG_BYTES) == 0;
}
|