summaryrefslogtreecommitdiff
path: root/src/add_vhdltbc/ii/machine_etat_chiffrement.vhd
blob: 9da6816cc8c12d16a611520196994b7e50eb4449 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
-- Implementation of the Lilliput-TBC tweakable block cipher by the
-- Lilliput-AE team, hereby denoted as "the implementer".
--
-- For more information, feedback or questions, refer to our website:
-- https://paclido.fr/lilliput-ae
--
-- To the extent possible under law, the implementer has waived all copyright
-- and related or neighboring rights to the source code in this file.
-- http://creativecommons.org/publicdomain/zero/1.0/

library IEEE;
library work;
use IEEE.numeric_std.all;
use IEEE.std_logic_1164.all;
use work.crypt_pack.all;

entity fsm_chiffrement is
	port (
		start_i           : in  std_logic;
		clock_i           : in  std_logic;
		reset_i           : in  std_logic;
		decrypt_i         : in  std_logic;
		compteur_o        : out std_logic_vector(7 downto 0);
		liliput_on_out    : out std_logic;
		invert_o          : out std_logic;
		data_out_valid_o  : out std_logic;
		permutation_o     : out std_logic;
		mux_keyschdule_o  : out std_logic;
		mux_chiffrement_o : out std_logic
	);
end fsm_chiffrement;

architecture fsm_chiffrement_arch of fsm_chiffrement is

	type state is (etat_initial,initroundkey, firstround, loopround, lastround);

	signal present, futur : state;
	signal compteur       : integer range 0 to ROUND;

begin

	invert_o   <= '0';
	compteur_o <= std_logic_vector(to_unsigned(compteur,8));

	process_0 : process(clock_i,reset_i,compteur)
	begin
		if reset_i = '0' then
			compteur <= 0;
			present  <= etat_initial;
		elsif clock_i'event and clock_i='1' then
			present <= futur;
			if (present = initroundkey or present = firstround or present =loopround) then
				compteur <= compteur+1;
			else
				compteur <= 0;
			end if;
		end if;
	end process process_0;


	process_1 : process(present, start_i, compteur)
	begin
		case present is
			when etat_initial =>
				if start_i = '1' then
					futur <= initroundkey;
				else
					futur <= present;
				end if;

			when initroundkey =>
				futur <= firstround;

			when firstround =>
				futur <= loopround;

			when loopround =>
				if compteur = ROUND-1 then
					futur <= lastround;
				else
					futur <= present;
				end if;

			when lastround =>
				futur <= etat_initial;

		end case;
	end process process_1;

	process_2 : process(present)
	begin
		case present is
			when etat_initial =>
				liliput_on_out    <= '0';
				data_out_valid_o  <= '0';
				permutation_o     <= '0';
				mux_keyschdule_o  <= '1';
				mux_chiffrement_o <= '1';

			when initroundkey =>
				liliput_on_out    <= '0';
				data_out_valid_o  <= '0';
				permutation_o     <= '0';
				mux_keyschdule_o  <= '1';
				mux_chiffrement_o <= '1';

			when firstround =>
				liliput_on_out    <= '1';
				data_out_valid_o  <= '0';
				permutation_o     <= '1';
				mux_keyschdule_o  <= '0';
				mux_chiffrement_o <= '0';

			when loopround =>
				liliput_on_out    <= '1';
				data_out_valid_o  <= '0';
				permutation_o     <= '1';
				mux_keyschdule_o  <= '0';
				mux_chiffrement_o <= '0';

			when lastround =>
				liliput_on_out    <= '1';
				data_out_valid_o  <= '1';
				permutation_o     <= '0';
				mux_keyschdule_o  <= '0';
				mux_chiffrement_o <= '0';
		end case;
	end process process_2;

end architecture fsm_chiffrement_arch;