summaryrefslogtreecommitdiff
path: root/src/add_threshold/tweakey.c
blob: 8f531d9ae1d2b6d41306a2afb6b71601eed2a12f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
Implementation of the Lilliput-AE tweakable block cipher.

Authors, hereby denoted as "the implementer":
    Alexandre Adomnicai,
    Kévin Le Gouguec,
    Léo Reynaud,
    2019.

For more information, feedback or questions, refer to our website:
https://paclido.fr/lilliput-ae

To the extent possible under law, the implementer has waived all copyright
and related or neighboring rights to the source code in this file.
http://creativecommons.org/publicdomain/zero/1.0/

---

This file provides a first-order threshold implementation of Lilliput-TBC's
tweakey schedule, where the tweak and the key are split into two shares.
*/

#include <stdint.h>
#include <string.h>

#include "constants.h"
#include "multiplications.h"
#include "random.h"
#include "tweakey.h"


#define LANES_NB       (TWEAKEY_BYTES/LANE_BYTES)
#define TWEAK_LANES_NB (TWEAK_BYTES/LANE_BYTES)
#define KEY_LANES_NB   (KEY_BYTES/LANE_BYTES)


void tweakey_state_init(
    uint8_t TK_X[TWEAKEY_BYTES],
    uint8_t TK_Y[KEY_BYTES],
    const uint8_t key[KEY_BYTES],
    const uint8_t tweak[TWEAK_BYTES]
)
{
    uint8_t SHARES_0[KEY_BYTES];
    randombytes(sizeof(SHARES_0), SHARES_0);

    memcpy(TK_Y, SHARES_0, KEY_BYTES);
    memcpy(TK_X, tweak, TWEAK_BYTES);

    for (size_t i=0; i<KEY_BYTES; i++){
        TK_X[i+TWEAK_BYTES] = key[i] ^ SHARES_0[i];
    }
}


void tweakey_state_extract(
    const uint8_t TK_X[TWEAKEY_BYTES],
    const uint8_t TK_Y[KEY_BYTES],
    uint8_t round_constant,
    uint8_t round_tweakey_X[ROUND_TWEAKEY_BYTES],
    uint8_t round_tweakey_Y[ROUND_TWEAKEY_BYTES]
)
{
    memset(round_tweakey_X, 0, ROUND_TWEAKEY_BYTES);
    memset(round_tweakey_Y, 0, ROUND_TWEAKEY_BYTES);

    for (size_t j=0; j<LANES_NB; j++)
    {
        const uint8_t *TKj_X = TK_X + j*LANE_BYTES;

        for (size_t k=0; k<LANE_BYTES; k++)
        {
            round_tweakey_X[k] ^= TKj_X[k];
        }
    }

    for (size_t j=0; j<KEY_LANES_NB; j++)
    {
        const uint8_t *TKj_Y = TK_Y + j*LANE_BYTES;

        for (size_t k=0; k<LANE_BYTES; k++)
        {
            round_tweakey_Y[k] ^= TKj_Y[k];
        }
    }

    round_tweakey_X[0] ^= round_constant;
}


typedef void (*matrix_multiplication)(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES]);

static const matrix_multiplication ALPHAS[6] = {
    _multiply_M,
    _multiply_M2,
    _multiply_M3,
    _multiply_MR,
    _multiply_MR2,
    _multiply_MR3
};


void tweakey_state_update(uint8_t TK_X[TWEAKEY_BYTES], uint8_t TK_Y[KEY_BYTES])
{
    /* Skip lane 0, as it is multiplied by the identity matrix. */

    for (size_t j=1; j<TWEAK_LANES_NB; j++)
    {
        uint8_t *TKj_X = TK_X + j*LANE_BYTES;

        uint8_t TKj_old_X[LANE_BYTES];
        memcpy(TKj_old_X, TKj_X, LANE_BYTES);

        ALPHAS[j-1](TKj_old_X, TKj_X);
    }

    for (size_t j=0; j<KEY_LANES_NB; j++)
    {
        uint8_t *TKj_X = TK_X + (j + TWEAK_LANES_NB)*LANE_BYTES;
        uint8_t *TKj_Y = TK_Y + j*LANE_BYTES;

        uint8_t TKj_X_old[LANE_BYTES];
        uint8_t TKj_Y_old[LANE_BYTES];
        memcpy(TKj_X_old, TKj_X, LANE_BYTES);
        memcpy(TKj_Y_old, TKj_Y, LANE_BYTES);

        ALPHAS[j-1 + TWEAK_LANES_NB](TKj_X_old, TKj_X);
        ALPHAS[j-1 + TWEAK_LANES_NB](TKj_Y_old, TKj_Y);
    }
}