summaryrefslogtreecommitdiff
path: root/src/ref/tweakey.c
blob: 3e8243ccb8d19a51aaecebe76dc61ade7c5193d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
Implementation of the Lilliput-AE tweakable block cipher.

Author: Kévin Le Gouguec, 2019.

For more information, feedback or questions, refer to our website:
https://paclido.fr/lilliput-ae

To the extent possible under law, the implementer has waived all copyright
and related or neighboring rights to the source code in this file.
http://creativecommons.org/publicdomain/zero/1.0/

---

This file provides an implementation of Lilliput-TBC's tweakey schedule,
where multiplications by matrices M and M_R to the power n are performed
by functions expressing the exponentiated matrices with shifts and XORs.
*/

#include <stdint.h>
#include <string.h>

#include "constants.h"
#include "tweakey.h"


#define LANE_BITS  64
#define LANE_BYTES (LANE_BITS/8)
#define LANES_NB   (TWEAKEY_BYTES/LANE_BYTES)


void tweakey_state_init(
    uint8_t TK[TWEAKEY_BYTES],
    const uint8_t key[KEY_BYTES],
    const uint8_t tweak[TWEAK_BYTES]
)
{
    memcpy(TK,             tweak, TWEAK_BYTES);
    memcpy(TK+TWEAK_BYTES, key,   KEY_BYTES);
}


void tweakey_state_extract(
    const uint8_t TK[TWEAKEY_BYTES],
    uint8_t round_constant,
    uint8_t round_tweakey[ROUND_TWEAKEY_BYTES]
)
{
    memset(round_tweakey, 0, ROUND_TWEAKEY_BYTES);

    for (size_t j=0; j<LANES_NB; j++)
    {
        const uint8_t *TKj = TK + j*LANE_BYTES;

        for (size_t k=0; k<LANE_BYTES; k++)
        {
            round_tweakey[k] ^= TKj[k];
        }
    }

    round_tweakey[0] ^= round_constant;
}


static void _multiply_M(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    Y[7] = X[6];
    Y[6] = X[5];
    Y[5] = X[5]<<3 ^ X[4];
    Y[4] = X[4]>>3 ^ X[3];
    Y[3] = X[2];
    Y[2] = X[6]<<2 ^ X[1];
    Y[1] = X[0];
    Y[0] = X[7];
}

static void _multiply_M2(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    uint8_t M_X[LANE_BYTES];
    _multiply_M(X, M_X);
    _multiply_M(M_X, Y);
}

static void _multiply_M3(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    uint8_t M_X[LANE_BYTES];
    uint8_t M2_X[LANE_BYTES];
    _multiply_M(X, M_X);
    _multiply_M(M_X, M2_X);
    _multiply_M(M2_X, Y);
}

static void _multiply_MR(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    Y[0] = X[1];
    Y[1] = X[2];
    Y[2] = X[3]    ^ X[4]>>3;
    Y[3] = X[4];
    Y[4] = X[5]    ^ X[6]<<3;
    Y[5] = X[3]<<2 ^ X[6];
    Y[6] = X[7];
    Y[7] = X[0];
}

static void _multiply_MR2(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    uint8_t MR_X[LANE_BYTES];
    _multiply_MR(X, MR_X);
    _multiply_MR(MR_X, Y);
}

static void _multiply_MR3(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    uint8_t MR_X[LANE_BYTES];
    uint8_t MR2_X[LANE_BYTES];
    _multiply_MR(X, MR_X);
    _multiply_MR(MR_X, MR2_X);
    _multiply_MR(MR2_X, Y);
}

typedef void (*matrix_multiplication)(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES]);

static const matrix_multiplication ALPHAS[6] = {
    _multiply_M,
    _multiply_M2,
    _multiply_M3,
    _multiply_MR,
    _multiply_MR2,
    _multiply_MR3
};


void tweakey_state_update(uint8_t TK[TWEAKEY_BYTES])
{
    /* Skip lane 0, as it is multiplied by the identity matrix. */

    for (size_t j=1; j<LANES_NB; j++)
    {
        uint8_t *TKj = TK + j*LANE_BYTES;

        uint8_t TKj_old[LANE_BYTES];
        memcpy(TKj_old, TKj, LANE_BYTES);

        ALPHAS[j-1](TKj_old, TKj);
    }
}